From Deep Inference to Proof Nets
نویسنده
چکیده
This paper shows how derivations in (a variation of) SKS can be translated into proof nets. Since an SKS derivation contains more information about a proof than the corresponding proof net, we observe a loss of information which can be understood as “eliminating bureaucracy”. Technically this is achieved by cut reduction on proof nets. As an intermediate step between the two extremes, SKS derivations and proof nets, we will see nets representing derivations in “Formalism A”.
منابع مشابه
From Deep Inference to Proof Nets via Cut Elimination
This paper shows how derivations in the deep inference system SKS for classical propositional logic can be translated into proof nets. Since an SKS derivation contains more information about a proof than the corresponding proof net, we observe a loss of information which can be understood as “eliminating bureaucracy”. Technically this is achieved by cut reduction on proof nets. As an intermedia...
متن کاملDeep Inference and the Calculus of Structures
The calculus of structures is a new proof theoretical formalism, introduced by myself in 1999 and initially developed by members of my group in Dresden since 2000. It exploits a new symmetry made possible by deep inference. We can present deductive systems in the calculus of structures and analyse their properties, as we do in the sequent calculus, natural deduction and proof nets. Typical prop...
متن کاملWhy are deep nets reversible: A simple theory, with implications for training
Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net’s input given the value of a hidden layer several levels above. However, there is no accompanying “proof of correctness” for the generative model, showing that the feedforwar...
متن کاملSome Observations on the Proof Theory of Second Order Propositional Multiplicative Linear Logic
We investigate the question of what constitutes a proof when quantifiers and multiplicative units are both present. On the technical level this paper provides two new aspects of the proof theory of MLL2 with units. First, we give a novel proof system in the framework of the calculus of structures. The main feature of the new system is the consequent use of deep inference, which allows us to obs...
متن کاملApplications of positive and intuitionistic bounded arithmetic to proof complexity
We introduce uniform versions of monotone and deep inference proof systems in the setting of bounded arithmetic, relating the size of propositional proofs to forms of proof-theoretic strength in weak fragments of arithmetic. This continues the recent program of studying the complexity of propositional deep inference. In particular this work is inspired by previous work where proofs of the propo...
متن کامل